Д.А. Болдырев¹, Л.И. Попова¹, С.Г. Прасолов¹, С.В. Давыдов², А.А. Токарев³

¹ Тольяттинский государственный университет.

² Брянский государственный технический университет

³ ООО «НПП «Технология»

Электронномикроскопическое исследование состава микровключений примесных фаз серого чугуна

Проведен анализ содержания неконтролируемых примесных карбидообразующих элементов в зонах микроструктуры с междендритным распределением графита типов D, E отливки нажимной пластины из серого перлитного чугуна марки СЧ25. Установлено, что данные элементы содержатся в комплексных сульфидно-фосфидных и карбонитридных фазах. Качественно идентифицирован элементный состав примесных включений. Сделан вывод о влиянии карбидообразователей на формирование зон с междендритным распределением графита.

Ключевые слова: электронно-микроскопический анализ, рентгеноспектральный микроанализ, карбидообразователи, междендритное распределение графита.

The content of uncontrolled impurity carbide-forming elements in zones of microstructure with interdritic distribution of graphite of types D, E of casting of pressure plate from gray pearlite iron of grade 25 was analyzed. It was found that these elements are contained in complex sulfide-phosphide and carbonitride phases. Element composition of impurity inclusions is qualitatively identified. The effect of carbide formers on the formation of zones with an interdritic distribution of graphite is concluded.

Keywords: electron-microscopic analysis, X-ray spectral microanalysis, carbide formers, interendritic distribution of graphite.

При разработке и освоении новой литейной продукции производитель сталкивается с проблемами несоответствия структуры и свойств материала отливок установленным нормативным требованиям. Одна из причин такого рода отклонений проявляется уже в самом начале технологической цепочки и связана с неудовлетворительным качеством применяемых для плавки шихтовых материалов. При изготовлении чугунных отливок это проявляется в наличии неконтролируемых карбидообразующих элементов, поступающих в расплав чугуна из отходов высокопрочных сталей и заметно ухудшающих морфологию графитной фазы. Данная проблема проявилась, в частности, при запуске в производство отливки «Пластина нажимная» из серого чугуна перлитного класса марки СЧ25. Для принятия и реализации мер по корректировке «зараженной» стальной составляющей шихтовых материалов является актуальным и необходимым проведение исследования и анализа наличия, размеров, распределения и элементного состава инородных включений, основу которых составляют неконтролируемые карбидообразователи, на формирование неблагоприятных междендритных распределений графита. Большие возможности при проведении такого рода исследований дает электронная микроскопия с микрорентгеноспектральным анализом, с помощью которой и были получены результаты исследований.

Электронномикроскопические фотографии и результаты рентгеноспектрального микроанализа представлены на рисунках 1—12. На рисунках 1—7 показаны участки средней части отливки, на рисунках 8—12 — участки края, поверхности отливки.

Электронномикроскопические изображения получены в обратно рассеянных электронах. Степень серого на данных изображениях характеризует химический состав исследуемого вещества (чем светлее — тем больше порядковый номер входящих в состав элементов по таблице Менделеева). Численные результаты весового содержания элементов в приведенном рентгеноспектральном анализе носят качественный характер.

По результатам проведенного электронно-микроскопического анализа с применением рентгеноспектрального микроанализа установлено, что такие неконтролируемые карбидообразующие примесные химические элементы как <u>цирконий</u>, <u>ванадий</u>, <u>титан</u>, <u>вольфрам</u>, <u>ниобий</u> и <u>молибден</u>, поступающие

Рис. 1. Электронномикроскопическое изображение участка средней части отливки; прямоугольником выделена зона для увеличения, см. рисунок 2

Рис. 2. Электронномикроскопическое изображение выделенного на рисунке 1 фрагмента; прямоугольниками выделены зоны для увеличения, см. рисунки 3, 4

из шихтовых материалов, представлены в чугуне в комплексных, сложных карбидно-нитридных и сульфидно-фосфидных фазах.

В сложных фазах компактной формы на основе комплексных железомарганцевых сульфидов сосредоточены такие химические элементы, как (и совместно и в отдельности) ванадий, титан, молибден, ниобий, вольфрам и цирконий. Отдельные фазы данного типа являются сульфидно-фосфидными, т.к. дополнительно содержат в себе <u>фосфор</u>. В единичных случаях встречаются включения фосфидной эвтектики с растворенными неконтролируемыми карбидообразующими примесными элементами, морфологически отличающиеся от остальных включений и представленные в виде фрагментов разорванной сетки.

Рис. 3. *а* — Электронномикроскопическое изображение выделенного фрагмента на рисунке 2; прямоугольником и крестиками выделены зоны локального рентгеноспектрального анализа карбидных и сульфидных включений, см. рисунки 3δ —3u; δ , e, d — рентгеновские спектры 27—30

Рис. 3 (продолжение). е, ж, з, и — рентгеновские спектры 31—34

Рис. 4. *а* — Электронномикроскопическое изображение выделенного фрагмента на рисунке 2; крестиками выделены зоны локального рентгеноспектрального анализа карбидных включений, см. рисунки *б*—*е*

Рис. 4 (продолжение). б, в, г – рентгеновские спектры 35–37

Рис. 5. *а* — Электронномикроскопическое изображение участка заготовки с карбидным и сульфидным включениями; крестиками выделены зоны локального рентгеноспектрального анализа, см. рисунки *б*, *в*

Рис. 5 (продолжение). б, в — рентгеновские спектры 48, 49

Рис. 6. *а* — Электронномикроскопическое изображение участка заготовки с фосфидной эвтектикой; прямоугольником выделена зона локального рентгеноспектрального анализа; *б* — рентгеновский спектр *50*

Рис. 7. *а* — Электронномикроскопическое изображение участка заготовки с фосфидной эвтектикой; крестиками выделены зоны локального рентгеноспектрального анализа карбонитридных включений и фосфидной эвтектики; *б*—*д* — рентгеновские спектры *54*—*57*

Рис. 8. Электронномикроскопическое изображение участка отливки в ее крайней части; прямоугольником выделена зона для увеличения, см. рисунок 9

Рис. 9. Электронномикроскопическое изображение выделенного фрагмента на рисунке 8; прямоугольником выделена зона для увеличения, см. рисунок 10

В сложных комплексных карбидных фазах, по большей части — вытянутой, неправильной формы, сосредоточены такие химические элементы в разных комбинациях, как <u>ванадий, титан, молибден, ниобий, вольфрам</u> и <u>цирконий</u>. Отдельные фазы данного типа являются карбонитридами, т.к. дополнительно содержат в себе <u>азот</u>.

В отдельных случаях оба этих типа включений объединяются в конгломерат в виде темного сульфида компактной формы со светлой вытянутой карбидной периферией.

Рис. 10. *а* — Электронномикроскопическое изображение выделенного фрагмента на рисунке 9; крестиками выделены зоны локального рентгеноспектрального анализа карбидных и сульфидных включений; *б*—*д* — рент-геновские спектры *100*—*103*

Рис. 10 (продолжение). е, ж — рентгеновские спектры 104, 105

Рис. 11. *а* — Электронномикроскопическое изображение участка заготовки с фосфидной эвтектикой; крестиками выделены зоны локального рентгеноспектрального анализа; *б*, *в* — рентгеновские спектры *95*, *96*

Рис. 12. *а* — Электронномикроскопическое изображение участка заготовки с сульфидно-карбидными включениями; крестиками выделены зоны локального рентгеноспектрального анализа; *б*, *е* — рентгеновские спектры *87*, *89*

Выводы

Все типы карбидно-нитридных и сульфидно-фосфидных фаз сосредоточены в большей степени внутри зон междендритных распределений пластинчатого графита ПГр8, ПГр9 (D и E) как в крайних участках образца, так и в его сердцевине, что косвенно подтверждает влияние на их формирование неконтролируемых карбидообразующих примесных химических элементов, повышающих склонность расплава чугуна к отбелу.